5x^2-45/x^2-16

Simple and best practice solution for 5x^2-45/x^2-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-45/x^2-16 equation:


D( x )

x^2 = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

5*x^2-(45/(x^2))-16 = 0

5*x^2-45*x^-2-16 = 0

t_1 = x^2

5*t_1^1-45*t_1^-1-16 = 0

5*t_1^1-45*t_1^-1-16*t_1^0 = 0

(5*t_1^2-16*t_1^1-45*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(5*t_1^2-16*t_1^1-45*t_1^0) = 0

t_1^1

5*t_1^2-16*t_1-45 = 0

5*t_1^2-16*t_1-45 = 0

DELTA = (-16)^2-(-45*4*5)

DELTA = 256+900

DELTA = 1156

DELTA > 0

t_1 = ((256+900)^(1/2)+16)/(2*5) or t_1 = (16-(256+900)^(1/2))/(2*5)

t_1 = (16+34)/10 or t_1 = (16-34)/10

t_1 in { (16-34)/10, (16+34)/10}

t_1 = (16-34)/10

x^2-((16-34)/10) = 0

1*x^2 = (16-34)/10 // : 1

x^2 = (16-34)/10

t_1 = (16+34)/10

x^2-((16+34)/10) = 0

1*x^2 = (16+34)/10 // : 1

x^2 = (16+34)/10

x^2 = (16+34)/10 // ^ 1/2

abs(x) = ((16+34)^(1/2))/(10^(1/2))

x = ((16+34)^(1/2))/(10^(1/2)) or x = -(((16+34)^(1/2))/(10^(1/2)))

x in { ((16+34)^(1/2))/(10^(1/2)), -(((16+34)^(1/2))/(10^(1/2))) }

See similar equations:

| 0.2a=4a | | 6-7x=30-21x | | 2x(x-5)=2x+1(x-4) | | n-3.5n+6.8=-1.9n+3.8 | | 56-4x=8x | | 6x+1+4x-6=45 | | 5(6-x)-3(-6-7x)= | | 195/338 | | 13.50+x+3+y=20-x+y | | 12x+15=6x+147 | | r^2-4r-45=0 | | 5z(z+2)=5(z+1) | | 8p+3=12+7p | | 3x-4*x+5=12 | | 4y-17=-4(-y+5) | | 6x+25=15x-65 | | 5wx-5v=7x+7v | | 6m-7+3m+3+5-8m= | | 279-3x=42+19 | | 8+2x-3=7x+19-3x | | 4xn+3=5+n | | 7-7x=79-35 | | 7m-6=7m+3 | | 13.5+x+3+y=20 | | x/3+2/5=x/5-2/5 | | -1x-2y=-2 | | 42.5x+x=50 | | 2x-5=9x-28 | | 11x-26=10x+18 | | 6x+2y+8z-2x+5z-3y= | | y=q+r+i/7 | | 2-x=-18 |

Equations solver categories